Plasmon electron–hole resonance in epitaxial graphene
نویسندگان
چکیده
منابع مشابه
Plasmon electron-hole resonance in epitaxial graphene.
The quasiparticle dynamics of the sheet plasmons in epitaxially grown graphene layers on SiC(0001) has been studied systematically as a function of temperature, intrinsic defects, influence of multilayers and carrier density using electron energy loss spectroscopy with high energy and momentum resolution. The opening of an inter-band decay channel appears as an anomalous kink in the plasmon dis...
متن کاملGraphene Oxide Based Surface Plasmon Resonance Biosensors
Graphene oxide (GO), an amorphous insulatormaterial, has consists of a hexagonal ring based carbon network having both sp2-hybridized carbon atoms and sp3-hybridizedcarbons bearing hydroxyl andepoxide functional groups on either side of the sheet, whereas the sheet edges are mostly decorated by carboxyl and carbonyl groups [1-6]. These unique properties hold great promise for potential applicat...
متن کاملEpitaxial graphene
Graphene multilayers are grown epitaxially on single crystal silicon carbide. This system is composed of several graphene layers of which the first layer is electron doped due to the built-in electric field and the other layers are essentially undoped. Unlike graphite the charge carriers show Dirac particle properties (i.e. an anomalous Berry’s phase, weak anti-localization and square root fiel...
متن کاملFree-standing epitaxial graphene.
We report on a method to produce free-standing graphene sheets from epitaxial graphene on silicon carbide (SiC) substrate. Doubly clamped nanomechanical resonators with lengths up to 20 microm were patterned using this technique and their resonant motion was actuated and detected optically. Resonance frequencies of the order of tens of megahertz were measured for most devices, indicating that t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics: Condensed Matter
سال: 2010
ISSN: 0953-8984,1361-648X
DOI: 10.1088/0953-8984/23/1/012001